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Abstract

Approximate differential cross sections for elastic collisions of rare gas ions with their parent

atoms are proposed for He+-He, Ne+-Ne, Ar+-Ar, Kr+-Kr, and Xe+-Xe collisions for collision

energies from ∼ 0.1 eV to 10 keV. The basic assumption of the generic model is that the scattering

of the ion by the atom is determined by the interaction potential that would be present in the

absence of symmetry considerations. This potential is assumed to be dominated by the polarization

interaction. We further assume that the scattering can be described classically and that charge

transfer effects lead to reflection about 90◦. Corrections are made for forward diffraction and

the absence of charge transfer effects in the near backward direction. The empirical differential

cross sections are compared with the few available results from quantum mechanical theory and

scattering experiments. Our results are formulated in terms of analytical expressions for use in

models of discharge plasmas, etc.

See files SYMMCOLL.TEX, SYMMCOL.PDF, and SymmIonAtomCollision.pdf.

PACS numbers: PACS numbers: 34.50.-s; 34.20.-b; 52.20.Hv
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I. INTRODUCTION

We propose a scalable classical formula based on polarization scattering for use in es-

timating the elastic differential cross section for collisions between rare gas ions and their

parent atoms, e.g., those of Ar+ with Ar. Our motivations for this study include continued

requests for these differential cross sections for discharge modelling and the extreme shortage

of either experimental or theoretical differential cross sections. We expect that these ideas

will apply to other ion-parent atom collisions.

What we do here is a lot like what was done by Nanbu and Kitatani [1]. They did

a Monte Carlo calculation of ion transport using classical scattering with a polarization

potential having a hard sphere radius determined by fitting to mobility data at high E/n

where charge transfer dominates. They found it necessary to apply a small angle (large

impact parameter) cutoff in their scattering model so as to obtain a finite total cross section

as required by their Monte Carlo calculations.

II. CLASSICAL CROSS SECTIONS

From McDaniel, Mitchell, and Rudd [2] the classical differential scattering cross section

in a.u. for a polarization potential in atomic units of V (r) = −cr−4 at small angles is given

by:

Ism(θ) = ((3π)1/2/8)(c/(Erelauθ))
1/2/(θ sin[θ]) (1)

Here θ is the scattering angle and Erel is the relative collision energy, both in center-of-mass.

A more accurate approximation to the classical scattering for a polarization potential is

obtained by numerically integrating Eq. (3-4-5) of McDaniel et al [2] for various impact

parameters, eliminating the impact parameter variable, and fitting by trial and error to

obtain

Icl(θ) = (0.07182 + 0.2713/θ5/2 + 0.08637/θ3/2)(αau/Erelau)
1/2 (2)

Both Ism(θ) and Icl(θ) have (θ)−5/2 singularities at θ = 0 and so cannot be integrated

to give an integral or ”total” scattering cross section [3]. Ism(θ) has a stronger singularity

at θ = π that prevents it being integrated to give a diffusion (momentum transfer) cross

section [3].
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My idea is to reflect the classical differential cross section about θ = π/2 in center of

mass. When doing so each part of the classical differential cross section given above must

be divided by 2 to give the same viscosity cross section [3].

Ict(θ) = ((0.07182 + 0.2713/θ5/2 + 0.08637/θ3/2) (3)

+(0.07182 + 0.2713/(π − θ)5/2 + 0.08637/(π − θ)3/2)) ∗ (αau/E
(
relau1/2)/2

This function has non-integrable (θ)−5/2 singularities at both θ = 0 and π. The next section

describes how we modify the assumed differential cross section so as to take into account

these singularities.

III. TOTAL CROSS SECTION CORRECTION

IV. CHARGE TRANSFER CORRECTION

In order to follow this section it is critical that the reader accept the idea that symmetric

charge transfer is just one aspect of elastic scattering [5]. This means that if one treats

elastic scattering properly, then symmetric charge transfer has been properly accounted for

in the collision process.

Our basic approach to charge transfer is to treat the elastic scattering classically, i.e.,

we assume that charge transfer only occurs within a certain impact parameter with its

corresponding distance of closest approach. One possibility would be to set the distance

of closest approach equal to distance at which the probability of charge transfer during a

collision, as defined by Holstein [6] Instead, we have used a much more empirical approach

in which the effective angular limit for charge transfer is set by the requirement that the

diffusion cross section calculated using the modified classical cross section be equal to the

diffusion cross section that we have determined from mobility experiments at low energies

and from twice the charge transfer cross section given by beam experiments at high energies

[4]. One advantage of our approach is that the ambiguities regarding the definition of

symmetric charge transfer cross section at low energies are avoided [7].

TO DO - Discuss the integrated cross sections derived from this approximation with

consideration of whether a) this is a useful technique for predicting charge transfer cross

sections, b) the backward hemisphere is a good (more universal) definition of charge transfer
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(see appendix for some of this), c) the possible correlation of charge transfer cross sections

with polarization (usually the correlation is with ionization potential). Point out that our

simplified classical model omits structure found in detailed classical and quantum models

such as the peak scattering at the rainbow angle.

V. H+ + H

Figures 1 through 4 show elastic differential cross sections versus scattering angle in

center-of-mass for H+ by H at 0.1, 1, 10 and 100 eV relative energy.

The solid curves are from Kristic and Schulz. [12] We note absence of a backward peak as

expected for “classical” symmetric charge transfer. The orange curve a constant differential

cross section on this type of plot.

The polarization curve without taking symmetric charge transfer into account. The

purple curve is our construction based on reflection of the polarization scattering about 90◦.

The blue curve is our polarization curve modified for the finite range of symmetric charge

transfer.

Elastic differential cross section (a2
0/sr) versus scattering angle (◦) in center-of-mass for

H+ by H at 1 eV relative energy. The solid curves are from Kristic and Schulz. [12] Note

absence of a backward peak. The almost hidden purple curve is our construction based on

reflection of the polarization scattering. The blue curve is our polarization curve modified

for the finite range of symmetric charge transfer.

Figure 3 shows elastic differential cross section (a2
0/sr) versus scattering angle (◦) in

center-of-mass for H+ by H at 10 eV relative energy. The solid curves are from Kristic and

Schulz. [12] The almost hidden purple curve is our construction based on reflection of the

polarization scattering. The blue curve is our polarization curve modified for the finite range

of symmetric charge transfer.

Figure 4 shows elastic differential cross section (a2
0/sr) versus scattering angle in center-

of-mass (◦) for H+ by H at 100 eV relative energy. The solid curves are from Kristic and

Schulz. [12] The almost hidden purple curve is our construction based on reflection of the

polarization scattering. The blue curve is our polarization curve modified for the finite range

of symmetric charge transfer.
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VI. HE+ + HE

Figures 5 and 6 show elastic differential cross section versus scattering angle in center-

of-mass for He+ by He at 0.05 and 15 eV relative energy. The cyan curve are from Kristic

and Schulz. [12] The purple curve is our construction from polarization scattering assuming

symmetrical charge transfer means reflection about 90◦. The red curve is our modification

that roughly accounts for the finite range of symmetric charge transfer. Note absence of a

backward peak in Fig. 5.

Figure ?? shows the elastic differential cross section versus scattering angle in center-of-

mass for He+ by He at 15 eV relative energy. The solid curves are from Kristic and Schulz.

[12] The blue curve is our polarization curve reflected about 90◦ and modified for the finite

range of symmetric charge transfer. The cyan points are from Vestal, Blakely, and Futrell

[11].

VII. NE+ + NE

VIII. AR+ + AR

Figures 7 and 8 show elastic differential cross sections versus scattering angle in center-

of-mass for Ar+ by Ar at 2.76 and 10 eV relative energy. Note the reduction in the backward

peak relative to the forward peak. The blue curve is our polarization curve reflected about

90◦ and modified for the finite range of symmetric charge transfer. The cyan points are from

Vestal, Blakely, and Futrell[11].

Figure 8 shows elastic differential cross section versus scattering angle in center-of-mass

for Ar+ by Ar at 10 eV relative energy. The almost hidden purple curve is our construction

based on reflection of the polarization scattering. The blue curve is our polarization curve

reflected about 90◦ and modified for the finite range of symmetric charge transfer. The dark

blue points are from Aberth and Lorents[10], while the cyan points are from Vestal, Blakely,

and Futrell[11].
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IX. KR+ + KR

X. XE+ + XE

XI. DISCUSSION

The polarization approximation used here for collisions between ions and their parent

atoms also works reasonably well for ions with foreign atoms. See slide 18 in the file Ion-

AtomGEC01.ppt for plots at low and moderate energies for the Na+ + Xe case.

Note that all of our suggested differential cross sections need to be smoothed using a

function representing diffraction effects. This important at angle near zero and 180 degrees.

See Massey and Mohr for a discussion of refractive effects and polarization scattering in the

near-forward direction.

I need to look at other non-symmetric ion-molecule cases and the consider whether there

are useful similar approximations for neutral-neutral differential scattering cross sections.
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APPENDIX A: SOME THOUGHTS ON SYMMETRIC CHARGE TRANSFER

THE FOLLOWING IS SLIGHTLY MODIFIED FROM NOTE ENTITLED: The com-

parison of experimental and theoretical symmetric charge transfer cross sections. A. V.

Phelps, April 10, 2003

I have always thought of symmetric charge transfer as being that aspect of the differential

scattering cross section that shows as a peak in the backward direction at high energies. This

picture is the result of having been brought up on the model of symmetric charge transfer as

the result of nearly straight line particle trajectories appropriate to relatively high collision

energies, e.g., Holstein, J. Phys. Chem. 56, 832 (1952). However, this picture fails as the

elastic differential scattering cross section becomes more isotropic at low collision energies.
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Also, when looked at on a fine enough angle scale, the backward peak is generally lower

than the forward peak and actually can be a dip (see 7 below) at 180◦ in center of mass.

It is important to note that the usual quantum mechanical expression for the symmetric

charge transfer cross section is obtained by extending the picture appropriate to high en-

ergies to all energies. Thus, it is assumed that at high energies the forward and backward

components of the scattering function do not interfere and can be evaluated separately. The

backward component is identified as giving the charge transfer cross section. The resultant

expression in then used under all conditions, e.g., even when the detailed calculations show

strong interference effects at all angles. Many authors use this formula. Papers like Sinha,

Lin, and Bardsley, J. Phys. B 12, 1613 (1979) and Krstic and Schulz (see below) are faintly

critical of the formula, but do not say it is wrong. Thus, quantum mechanics texts give us

a potentially questionably quantity to be compared with experiment.

Recently, it dawned on me that the symmetric charge transfer cross section results from

quantum mechanics can be more accurately compared with experiment at most (all?) en-

ergies by measurement or calculation of the integrated scattering into the backward half

sphere as used originally(?) by Hinds and Novick[? ]. This empirical correlation can be

seen to predict the right relation between the diffusion cross section and the charge transfer

cross section for isotropic scattering, as for very low energies, and for backward scattering,

as at high energies. In both of these cases the half-sphere, charge transfer cross section is

easily shown to be half the momentum transfer or diffusion cross section.

Some points to consider are:

1)This change in the picture of symmetric charge transfer from a backward peak to the

backward half sphere allows one ”understand” the 2:1 cross section ratio found in several

recent quantum mechanical calculations:

a) For the scattering of H+ by H at 0.1 eV, Fig. 8 of Krstic and Schulz, J. Phys.

B 32, 3485 (1999) shows that it is essentially impossible to assign a backward scattering

component to the elastic cross section. Yet Krstic and Schulz show, see Fig. 5, that the

symmetric charge transfer cross section has its maximum values near 0.1 eV and is very

nearly half the diffusion cross section at all energies.

b) Cote and Dalgarno, Phys. Rev. A 62, 012709 (2000) show that the theoretical charge

transfer cross section for Na+ + Na is almost exactly half the diffusion (momentum transfer)

cross section from 1E-15eV to 10 eV. The departures from 2:1 near 1E-5 eV may be the
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result of interference effects. At very low energies the scattering is s-wave and the 2:1 ratio

is expected.

2) The determination of symmetric charge transfer cross sections from measurements of

scattering into the backward half-sphere was used by Hinds and Novick, J. Phys. B 11, 2201

(1978). These authors used a retarding grid set at one quarter of the beam energy to reject

ions that have less than half their initial velocity in the beam direction after a collision.

These authors claim that their measured cross section is equal to the charge transfer cross

section to within a few percent, but do not give details. I think that there is another reference

using this approach, but I have misplaced it.

3) Helm, J. Phys. B 10, 3683 (1977) takes the symmetric charge exchange cross section to

be half the diffusion (momentum transfer) cross section determined from mobility measure-

ments at all energies. So far, I have not found his argument for doing this at low energies.

I question its validity.

4) As far as Monte Carlo calculations of ion transport are concerned, the definition of

symmetric charge transfer as scattering into the back half-sphere results in a great deal of

uncertainty as to what to assume for the differential cross section. The importance of this

uncertainty is significantly reduced by the conclusion of Piscitelli and Pitchford (private

communication) that the calculated mobilities of Ne+ in Ne and Xe+ in Xe are indepen-

dent of whether one uses an isotropic elastic differential cross section or a two component

(backward and isotropic) elastic differential scattering cross section with the same diffusion

cross section.

5) A potentially significant loss to the simplicity of some ion transport models from this

definition of symmetric charge transfer is breakdown of the idea that zero energy ions are

produced by the collision with a ”cold”, parent gas atom. The idea is particularly useful at

”high” energies because of the detailed behavior of the differential cross section within the

backward half sphere.

6) The definition of the experimental symmetric charge transfer cross section as the

integrated scattering in the backward half sphere considerably simplifies the interpretation

of many beam measurements that make use of the collection of slow ions using a transverse

electric field. This is because the details of the angular distribution of product ions is

unimportant provided the ions are concentrated in the backward and forward directions in

CM.
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7) A point that is related to the above is that for the case of symmetrical ion scattering,

the differential cross section should not be symmetrical about 90cir CM and that there should

be a minimum in the differential cross section at 180◦ CM. Using classical trajectories, these

effects are the result of impact parameters for which the distance of closest approach is

outside the range of effective charge transfer and the corresponding scattering angle is too

small for charge transfer to be effective. The result is a peak in the forward scattering

at small angles that is not reflected about 90◦ and a corresponding deficiency of scattered

particles at 180◦ CM. Calculations show that this structure is often not obscured by ion

diffraction effects. These structures in the differential cross section can be seen in the

theoretical results of Krstic and Schulz for H+ + H for 0.1 and 1 eV (Fig. 8). In the case

of He+ + He, this effect shows as a lower scattering peak in the backward direction than in

the forward direction - Sinha et al (1979).

8) Sinha et al (1979) point out that the ”formulation of transport theory does not require

the definition of a cross section for charge transfer”.
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FIG. 1: Elastic differential cross section in a2
0/sr versus scattering angle in ◦ in center-of-mass for

H+ by H at 0.1 eV relative energy. The solid curves are from Kristic and Schulz. [12] Note absence

of a backward peak as expected for “classical” symmetric charge transfer. The green curve is the

polarization curve without taking symmetric charge transfer into account. The orange curve a

constant differential cross section on this type of plot. The purple curve is our construction based

on reflection of the polarization scattering. The blue curve is our polarization curve modified for

the finite range of symmetric charge transfer.
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FIG. 2: Elastic differential cross section (a2
0/sr) versus scattering angle (◦) in center-of-mass for

H+ by H at 1 eV relative energy. The solid curves are from Kristic and Schulz. [12] Note absence

of a backward peak. The almost hidden purple curve is our construction based on reflection of the

polarization scattering. The blue curve is our polarization curve modified for the finite range of

symmetric charge transfer.
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FIG. 3: Elastic differential cross section (a2
0/sr) versus scattering angle (◦) in center-of-mass for

H+ by H at 10 eV relative energy. The solid curves are from Kristic and Schulz. [12] The almost

hidden purple curve is our construction based on reflection of the polarization scattering. The blue

curve is our polarization curve modified for the finite range of symmetric charge transfer.
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FIG. 4: Elastic differential cross section (a2
0/sr) versus scattering angle in center-of-mass (◦) for

H+ by H at 100 eV relative energy. The solid curves are from Kristic and Schulz. [12] The almost

hidden purple curve is our construction based on reflection of the polarization scattering. The blue

curve is our polarization curve modified for the finite range of symmetric charge transfer.
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FIG. 5: Elastic differential cross section (m2/sr) versus scattering angle in center-of-mass (◦) for

He+ by He at 0.05 eV relative energy. The cyan curve are from Kristic and Schulz. [12] Note absence

of a backward peak. The purple curve is our construction from polarization scattering assuming

symmetrical charge transfer means reflection about 90 deg. The red curve is our modification that

roughly accounts for the finite range of symmetric charge transfer.

14



255075100125150175
Scattering angle HdegreesL1.´10-21

1.´10-20
1.´10-19
1.´10-18
1.´10-17
1.´10-16

D
i
f
f
e
r
e
n
t
i
a
l

c
r
o
s
s

s
e
c
t
i
o
n

Hm^2�
r
d

L

FIG. 6: Elastic differential cross section (m2/sr) versus scattering angle (◦) in center-of-mass for

He+ by He at 15 eV relative energy. The solid curves are from Kristic and Schulz. [12] The blue

curve is our polarization curve modified for the finite range of symmetric charge transfer. The cyan

points are from Vestal, Blakely, and Futrell [11].
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FIG. 7: Elastic differential cross section (a2
0/sr) versus scattering angle in center-of-mass (◦) for

Ar+ by Ar at 2.76 eV relative energy. Note the reduction in the backward peak relative to the

forward peak. The blue curve is our polarization curve modified for the finite range of symmetric

charge transfer. The cyan points are from Vestal, Blakely, and Futrell[11].
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FIG. 8: Elastic differential cross section (a2
0/sr) versus scattering angle (◦) in center-of-mass for

Ar+ by Ar at 10 eV relative energy. The almost hidden purple curve is our construction based on

reflection of the polarization scattering. The blue curve is our polarization curve modified for the

finite range of symmetric charge transfer. The dark blue points are from Aberth and Lorents[10],

while the cyan points are from Vestal, Blakely, and Futrell[11].
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