</p>

Budapest (Budapest Drift Tube Database)click to expand or collapse

PERMLINK: www.lxcat.net/Budapest

DESCRIPTION: This database containes experimental swarm data obtained with a Scanning Drift Tube apparatus operated at the Wigner Research Centre for Physics, Budapest, Hungary.

CONTACT: Zoltan Donko, donko.zoltan@wigner.hu

HOW TO REFERENCE: The description of the experimental apparatus is given in [I. Korolov, M. Vass, N. Kh. Bastykova and Z. Donko: "A scanning drift tube apparatus for spatiotemporal mapping of electron swarms" Rev. Sci. Instrum. 87, 63102 (2016)]. For an update on the details of the data acquisition see [N. R. Pinhao, D. Loffhagen, M. Vass, P. Hartmann, I. Korolov, S. Dujko, D. Bosnjakovic, Z. Donko: "Electron swarm parameters in C2H2, C2H4 and C2H6: measurements and kinetic calculations" Plasma Sources Sci. Technol. 29, 045009 (2020)].

SWARM / TRANSPORT DATAclick to expand or collapse

Species: e + C2H2 [3], C2H4 [4], C2H6 [4], CH4 [3], CO [4], CO2 [3], D2 [3], N2:O2 [1]

Updates: 2021-05-12 … 2022-10-11

Downloads: 677 times from 2021-05-12

CDAP (State-to-state electron-impact excitation rate coefficients)click to expand or collapse

PERMLINK: www.lxcat.net/CDAP

DESCRIPTION: State-to-state electron-impact excitation rate coefficients of atoms, ions, and small molecules can be obtained by examining collisional-radiative modelling by plasma experiments under specific conditions with combination of OES, LAS, probe, and microwave experiments. This method orignied from the so-called CDAP method in afterglow discharge of argon CCP and is expended to other kinds of miniaturized ECR and ICP.These rate coefficient data are available for modelling of non-equlibrium plasma with excited state kinetics considered as well as for determining electron temperature and density by the OES line-ratio method.

CONTACT:
Xi-Ming Zhu (simon.ximing.zhu@outlook.com) ,Yan-Fei Wang (arvin.yanfei.wang@outlook.com) and Lu Wang (hans.lu.wang@outlook.com) Harbin Institute of Technology, Harbin 150080, China
Yi-Kang Pu (puyikang@mail.tsinghua.edu.cn) Tsinghua University, Beijing 100084, China

HOW TO REFERENCE:
Xi-Ming Zhu, Yan-Fei Wang, Yang Wang, Da-Ren Yu, Oleg Zatsarinny, Klaus Bartschat, Tsanko Vaskov Tsankov, and Uwe Czarnetzki 2019 Plasma Sources Sci. Technol. 28 105005.
Xi-Ming Zhu, Zhi-Wen Cheng, Emile Carbone, Yi-Kang Pu, and Uwe Czarnetzki 2016 Plasma Sources Sci. Technol. 25 043003.

SWARM / TRANSPORT DATAclick to expand or collapse

Christophorou databaseclick to expand or collapse

PERMLINK: www.lxcat.net/Christophorou

DESCRIPTION: A compilation of molecular data assembled and evaluated by Loucas G. Christophorou and collaborators.

CONTACT: These data were imported into LXCat by Sergey Pancheshnyi, ABB Switzerland Ltd., 2015-2016.

HOW TO REFERENCE: Please refer to these data using the sources cited for each gas.

SWARM / TRANSPORT DATAclick to expand or collapse

Species: e + SF6 [9]

Updates: 2015-09-29 … 2015-09-29

Downloads: 776 times from 2015-09-29

Dutton databaseclick to expand or collapse

PERMLINK: www.lxcat.net/Dutton

DESCRIPTION: This is an experimental database which includes, at present, data for rare gases from J. Dutton, “Survey of Electron Swarm Data”, J. Phys. Chem. Ref. Data, 4, 577, 1975. This publication also includes data for molecular gases, and their transcription into this database is in progress. These data were imported into LXCat by Sanchita Chowdhury, LAPLACE, Toulouse, France, 2010-2011.

HOW TO REFERENCE: Jack Dutton, “Survey of Electron Swarm Data”, J. Phys. Chem. Ref. Data, 4, 577, 1975

SWARM / TRANSPORT DATAclick to expand or collapse

Species: e + Air [10], Ar [17], CO [9], CO2 [20], H2 [33], He [13], Kr [4], N2 [36], Ne [8], O2 [27], Xe [4]

Updates: 2011-10-20 … 2019-11-26

Downloads: 7343 times from 2013-08-18

eMol-LeHavre (eMol group LeHavre)click to expand or collapse

PERMLINK: www.lxcat.net/eMol-LeHavre

DESCRIPTION: A compilation of atomic and molecular data, calculated within eMol LeHavre group. The data were obtained for the electron temperature range up to 5 eV in electron scattering processes in cold plasma. The database contains cross sections sets and Maxwell rate coefficients. Data are permanently updated. These data were imported into LXCat by Felix Iacob.

CONTACT: Felix Iacob, West University of Timisoara, email: felix.iacob@e-uvt.ro

HOW TO REFERENCE: Please refer to these data using the sources cited for each species.

SWARM / TRANSPORT DATAclick to expand or collapse

Species: e + BeH+ [1]

Updates: 2019-11-03 … 2019-11-03

Downloads: 100 times from 2019-11-03

ETHZ (ETH Zurich, High Voltage Laboratory)click to expand or collapse

PERMLINK: www.lxcat.net/ETHZ

DESCRIPTION: This is a database of electron swarm parameters obtained with pulsed Townsend experiments at the High Voltage Laboratory of ETH Zurich, Switzerland. These experiments enable us to measure electron and ion swarm parameters in arbitrary gases, such as the reaction rates of ionization, attachment, detachment and conversion, the electron and ion mobilities, and the longitudinal electron diffusion coefficient. Our group is open for joint projects where such measurements are needed. Please contact us (cfranck@ethz.ch) in case you are looking for data on gases that are not available or need updates. Currently, the database contains the swarm parameters of atmospheric gases, fluorinated gases, and gas mixtures. Measurements are ongoing and the database is regularly updated.

CONTACT: A. Chachereau (alisec@ethz.ch), C. M. Franck (cfranck@ethz.ch)

SWARM / TRANSPORT DATAclick to expand or collapse

Heidelberg databaseclick to expand or collapse

PERMLINK: www.lxcat.net/Heidelberg

DESCRIPTION: This is a database of electron transport parameters measured at the University Heidelberg in the years 1978 to 1996. Different electron swarm experiments were setup by Bernhard Schmidt and co-workers which allowed to measure electron transport parameters in pure electric and perpendicular crossed electric and magnetic fields. This database contains only those data for B=0. Additional swarm data for non-zero B fields will be made available in tabular and graphical form in the NOTES section of LXCat when resources become available.

CONTACT: Malte Hildebrandt, malte.hildebrandt@psi.ch

SWARM / TRANSPORT DATAclick to expand or collapse

Species: e + Ar:C2H6O [1], C2H4 [3], C2H6 [5], C2H6O [1], C3H6 [6], C3H8 [3], C4H10:Ar [3], C4H10:He [3], CH4 [8], CO2 [3], CO2:Ar [3], CO2:Ne [3], D2 [2], H2 [7], H2:Ar [1], H2:Kr [1], H2:Xe [1], N2 [3], N2:Ar [3]

Updates: 2017-05-05 … 2019-04-08

Downloads: 1261 times from 2017-05-04

IST-Lisbon databaseclick to expand or collapse

PERMLINK: www.lxcat.net/IST-Lisbon

DESCRIPTION: IST-Lisbon database contains up-to-date electron-neutral scattering cross sections (together with the measured swarm parameters used to validate these data), resulting from the research effort of the Group N-Plasmas Reactive: Modelling and Engineering (N-PRiME) with IPFN/IST (Instituto de Plasmas e Fusao Nuclear / Instituto Superior Tecnico), Lisbon, Portugal.
The data, compiled from the literature, correspond to contributions from different authors (see detailed references in the database). For each gas the database presents a COMPLETE SET of cross sections, validated against measured swarm parameters by solving the two-term homogeneous electron Boltzmann equation. In most cases, predictions are in agreement with measurements within 1-20%, for reduced electric fields E/N ~ 1e-4 - 500 Td. To improve predictions at low E/N, some sets need to be completed with rotational cross sections, also available in the database.

CONTACT: LL Alves and V Guerra
e-mail: llalves@@tecnico.ulisboa.pt

HOW TO REFERENCE: L.L. Alves, ''The IST-Lisbon database on LXCat'' J. Phys. Conf. Series 2014, 565, 1

SWARM / TRANSPORT DATAclick to expand or collapse

Species: e + Ar [17], CH4 [16], H2 [7], He [21], N2 [11]

Updates: 2012-03-25 … 2018-06-29

Downloads: 3319 times from 2013-08-18

LAPLACE (measurements after 1975)click to expand or collapse

PERMLINK: www.lxcat.net/LAPLACE

DESCRIPTION: These data were extracted from articles published after the 1975 or not appearing in the review article by Dutton (and the associated “Dutton” database). The data in this database were digitized by S Chowdhury (LAPLACE, Toulouse) from figures in the publications or from data tables if tables were provided in the publications.

CONTACT: leanne.pitchford@@laplace.univ-tlse.fr

SWARM / TRANSPORT DATAclick to expand or collapse

Phelps databaseclick to expand or collapse

PERMLINK: www.lxcat.net/Phelps

DESCRIPTION: A compilation of atomic and molecular data, assembled and evaluated by A.V. Phelps and collaborators. Please refer to these data using the sources cited for each gas. We make no claims for these cross sections beyond those stated in the papers where they are published or cited. In most cases these cross sections were assembled in the 1970's and 1980's. In only a few cases have they been modified or tested since that time. I do not plan any updates. Additions have been made when cross sections have been assembled for other purposes. Since the JILA information center was closed by NIST, there is no one there to help you. Opinions expressed are those of AV Phelps and do not imply JILA, CU, or NIST approval.

CONTACT: A.V. Phelps, Fellow Adjoint of JILA
University of Colorado
Boulder, CO 80309-0440
e-mail: avp@@jila.colorado.edu

HOW TO REFERENCE: http://jilawww.colorado.edu/~avp/

SWARM / TRANSPORT DATAclick to expand or collapse

Species: Ar+ + Ar [4]; He+ + He [2]; N2+ + N2 [2]; Ne+ + Ne [2]; N+ + N2 [2]

Updates: 2010-09-13 … 2012-04-17

Downloads: 2984 times from 2013-08-30

UNAM databaseclick to expand or collapse

PERMLINK: www.lxcat.net/UNAM

DESCRIPTION: Electron swarm data derived from a pulsed Townsend experiment at UNAM, México.

CONTACT: J. de Urquijo

SWARM / TRANSPORT DATAclick to expand or collapse

UT (University of Tartu)click to expand or collapse

PERMLINK: www.lxcat.net/UT

DESCRIPTION: A compilation of molecular data determined by Plasma Physics laboratory in University of Tartu

CONTACT: Indrek Jogi, indrek.jogi@ut.ee

SWARM / TRANSPORT DATAclick to expand or collapse

Species: e + Air [3], Ar [4], Ar:CO2 [28], Ar:N2 [28], Ar:O2 [32], C5F10O [4], C5F10O:Air [9], CO2 [4], He [5], He:N2 [28], He:O2 [32], N2 [4], O2 [5]

Updates: 2018-02-08 … 2023-05-10

Downloads: 843 times from 2018-01-29

Viehland databaseclick to expand or collapse

PERMLINK: www.lxcat.net/Viehland

DESCRIPTION: The data here are from the Gaseous Ion Transport and Rate Coefficient Database, Software Release 4.1 (March, 2006), as extended and updated on a regular basis.

CONTACT: Larry A. Viehland, Viehland@Chatham.edu

HOW TO REFERENCE: L. A. Viehland and C. C. Kirkpatrick, Int. J. Mass Spectrom. Ion Proc. 149/150 (1995) 555.

SWARM / TRANSPORT DATAclick to expand or collapse

Species: (CH2)2O+ + He [1]; (SF6)2- + SF6 [1]; (SF6)3- + SF6 [1]; 11B+(1S0) + He [1]; 127I+ + He [1]; 127I- + Ar [1], He [1]; 12C(2P)+ + Ar [170], He [175], Kr [122], Rn [122], Xe [122]; 12C(2P1/2)+ + Ar [170], He [170], Kr [122], Ne [122], Rn [122], Xe [122]; 12C(2P3/2)+ + Ar [170], He [170], Kr [122], Ne [122], Rn [122], Xe [122]; 12C(4P)+ + He [4]; 12C+ + Ar [1], CO [2], He [3]; 132Xe(A)2+ + Xe [1]; 132Xe(B)2+ + Xe [1]; 132Xe(P1)+ + Xe [2]; 132Xe(P3)+ + Xe [2]; 132Xe+ + Ar [1], He [2], Ne [1], Xe [2]; 132Xe2+ + He [2]; 133Cs+ + Ar [3], CO [2], CO2 [2], H2 [2], He [2], Kr [3], N2 [2], Ne [3], O2 [2], Xe [3]; 138Ba+(2S1/2) + Ar [3], He [2]; 13C(2P)+ + Ar [122], Kr [122], Ne [122], Rn [122], Xe [122]; 13C(2P1/2)+ + Ar [122], He [170], Kr [122], Ne [122], Xe [122]; 13C(2P3/2)+ + Ar [122], He [170], Kr [122], Ne [122], Rn [122], Xe [122]; 13C(4P)+ + He [170]; 13C(4P1/2)+ + He [170]; 13C(4P3/2)+ + He [170]; 13C(4P5/2)+ + He [170]; 14N16O+(v=0) + Ar [124], He [172], Kr [124], Ne [124], Xe [124]; 14N+(3P0) + Ar [1], He [3], N2 [4]; 16O(2D)+ + Ne [1]; 16O(4S)+ + He [1], Ne [1]; 16O*+ + Ar [1], He [1]; 16O+(4S3/2) + Ar [2], He [7], Ne [3]; 16O-(2P1/2) + Air [1], CO2 [2], He [4], O2 [4]; 16O2+ + He [1], Ne [1]; 19F+ + He [1]; 19F- + Ar [1], He [6], Kr [2], SF6 [2], Xe [2]; 1H+ + H2 [4], He [2], Ne [1]; 1H- + H2 [4], He [1]; 202Hg(1S)2+ + He [1]; 202Hg(3D)2+ + He [1]; 202Hg+ + He [1], Ne [1]; 205Tl+ + Ar [4], He [4], Kr [4], Ne [4], O2 [1], Xe [4]; 20Ne+(2P1/2) + Ne [2]; 20Ne+(2P3/2) + Ne [2]; 20Ne+(mix) + Ar [1], He [13], Ne [7]; 21Ne+(2P1/2) + Ne [1]; 21Ne+(2P3/2) + Ne [1]; 21Ne+(mix) + He [1]; 22Ne+(mix) + He [2]; 238U+ + He [4]; 23Na+(1S0) + Ar [8], CH4 [2], CO2 [4], D2 [3], H2 [2], He [6], Kr [5], Ne [9], O2 [1], SF6 [1], Xe [4]; 28Si+ + He [1]; 28Si+(2P) + Kr [122], Rn [122], Xe [122]; 28Si+(2P1/2) + Kr [122], Rn [122], Xe [122]; 28Si+(2P3/2) + Kr [122], Rn [122], Xe [122]; 29Si+(2P) + Kr [122], Rn [122], Xe [122]; 29Si+(2P1/2) + Kr [122], Rn [122], Xe [122]; 29Si+(2P3/2) + Kr [122], Rn [122], Xe [122]; 2H+ + D2 [4], He [2], Ne [1]; 2H- + D2 [3]; 30Si+(2P) + Kr [122], Rn [122], Xe [122]; 30Si+(2P1/2) + Kr [122], Rn [122], Xe [122]; 30Si+(2P3/2) + Kr [122], Rn [122], Xe [122]; 32S+ + He [2]; 32S-(2P) + He [1]; 35Cl-(1S0) + Air [1], Ar [3], He [4], Kr [4], N2 [2], Ne [3], Xe [3]; 35Cl+ + He [1]; 39K+ + Ar [5], CH4 [1], CO [4], CO2 [2], D2 [1], H2 [3], He [9], Kr [3], N2 [3], Ne [2], NO [2], O2 [4], Xe [2]; 40Ar(D1)2+ + Ar [1]; 40Ar(P3)2+ + Ar [1]; 40Ar+ + Ar [6], He [9], Ne [1]; 40Ar+(2P) + Ar [1], He [1]; 40Ar2+ + Ar [3], He [1]; 4He+ + He [12], Ne [2]; 4He2+ + He [1]; 70Ge+(2P) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 70Ge+(2P1/2) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 70Ge+(2P3/2) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 72Ge+(2P) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 72Ge+(2P1/2) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 72Ge+(2P3/2) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 73Ge+(2P) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 73Ge+(2P1/2) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 73Ge+(2P3/2) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 74Ge+(2P) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 74Ge+(2P1/2) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 74Ge+(2P3/2) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 76Ge+(2P) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 76Ge+(2P1/2) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 76Ge+(2P3/2) + Ar [122], He [146], Kr [122], Ne [122], Rn [122], Xe [122]; 79Br+ + Ar [1]; 79Br- + Ar [6], He [2], Kr [4], Ne [3], Xe [4]; 7Li+(1S0) + Ar [11], C2H6(CH3)COH [1], CH4 [2], CO [2], CO2 [2], D2 [1], H2 [4], HBr [1], HCl [1], He [19], HI [1], Kr [3], N2 [5], Ne [10], O2 [3], Xe [3]; 84Kr(2P1/2)+ + Kr [1]; 84Kr(2P3/2)+ + Kr [1]; 84Kr(2P3/2)2+ + Kr [1]; 84Kr(A)2+ + Kr [1]; 84Kr(B)2+ + Kr [1]; 84Kr+(2P) + Ar [2], He [5], N2 [1]; 84Kr2+ + He [2], Kr [1]; 85Rb+ + Ar [4], CO2 [5], H2 [4], He [5], Kr [5], N2 [5], Ne [5], O2 [4], Xe [6]; Ar2+ + Ar [2]; ArH+ + He [1]; C10H8+ + He [1]; C2H2- + He [1]; C2H3N+ + He [1]; C2H5+ + CH4 [2]; C2N2+ + He [1]; C2N+ + He [1]; C2O2+ + CO [3]; C2O4+ + CO2 [1]; C3H5+ + CH4 [2]; C3H7+ + D2 [1]; C6H6+ + He [1]; C6H7+ + He [1]; CF3+ + CF4 [1]; CH2CHOH+ + He [1]; CH2+ + He [4]; CH3CHOH+ + He [1]; CH3O2+ + He [1]; CH3OCH2+ + He [1]; CH3+ + Ar [2], He [4]; CH4+ + He [2]; CH5+ + CH4 [2], He [1]; CHF2+ + CHF3 [1]; CH+ + He [4]; CN+ + He [1]; CO*+ + He [1]; CO2+ + Ar [1], CO2 [1], He [3], N2 [2], Ne [1]; CO3- + Ar [1], CO2 [2], He [1], O2 [2]; CO4- + O2 [2]; COH+ + Ar [1], He [1]; CO+ + Ar [1], CO [5], He [5], Ne [1]; C+(2P) + He [1]; D3+ + D2 [4]; H2CN+ + He [1]; H2O+ + Ar [1], He [1], Ne [1]; H2+ + He [1]; H3O+ + Ar [1], CH4 [1], He [1], N2 [1]; H3+ + H2 [5], He [1]; H5O2+ + He [1], N2 [1]; H7O3+ + He [1], N2 [1]; HCN+ + He [2]; He2+ + He [2]; HeH+ + He [1]; He+(2S1/2) + He [1]; Kr2+ + Kr [2]; LiCH4+ + D2 [1]; LiCO2+ + CO2 [1]; LiCO+ + CO [1]; LiN2+ + N2 [1]; N2Ar+ + He [1]; N2H+ + Ar [1], He [1], N2 [2]; N2O2+ + NO [1]; N2OH+ + Ar [1], He [1]; N2O+ + Ar [2], He [2], N2 [1], Ne [1]; N2+ + Ar [1], He [3], Kr [1], N2 [9], Ne [1]; N3+ + N2 [2]; N4+ + He [1], N2 [3]; Ne2+ + Ne [3]; Ne+(2Sigma_1/2+) + Ar [1], He [1], Ne [1]; Ne2+(D1) + Ne [1]; NH2+ + He [1]; NH3+ + He [1]; NH4+ + He [1]; NO2+ + Air [1], Ar [1], He [1], N2 [1]; NO2- + Air [1], He [1], N2 [1]; NO3- + N2 [1]; NOH2O+ + He [1]; NO+ + Air [1], CO2 [1], He [3], NO [2]; O2*+ + Ne [1]; O2H2+ + He [1]; O2H+ + He [1]; O2+ + Air [1], Ar [1], CO2 [1], He [1], Kr [1], Ne [1], O2 [10]; O2- + Air [1], He [3], O2 [4]; O22+ + Ar [1]; O3- + Air [1], Ar [1], He [1], O2 [2]; O4+ + O2 [2]; O4- + O2 [1]; OD- + He [3]; OH- + He [4]; S2F7+ + SF6 [1]; S2- + He [1]; SF3+ + SF6 [2]; SF4+ + SF6 [1]; SF5+ + SF6 [2]; SF5- + He [1], SF6 [2]; SF6- + He [1], SF6 [2]; SH- + He [1]; SO2F- + He [1]; SO2+ + Ar [1], He [1]; SO3- + He [1]

Updates: 2010-05-14 … 2022-03-05

Downloads: 9727 times from 2013-08-18

XJTUAETLab (Xi'an Jiaotong University, Advanced Electrical Technology Laboratory)click to expand or collapse

PERMLINK: www.lxcat.net/XJTUAETLab

DESCRIPTION: This database is an open-access database for sharing Fundamental Physicochemical Properties of Gas Discharges and Plasma. Since 2007, these data were obtained gradually via experiments or theoretical calculations conducted by more than ten PhD students from our Lab. This database includes electron and ion scattering cross sections, swarm parameters (ionization coefficients, attachment coefficients, electron mobility, diffusion coefficient, etc.), dielectric breakdown strength, chemical reaction rates, equation of state (EOS), and other data required for modeling gas discharges and plasma. We hope our database can help to promote the innovative development of relevant fundamental research.

CONTACT: Boya Zhang (zhangby@xjtu.edu.cn) Huantong Shi (htshi@mail.xjtu.edu.cn) Jian Wu (jxjawj@mail.xjtu.edu.cn) Xingwen Li(xwli@mail.xjtu.edu.cn)

HOW TO REFERENCE: Please refer to these data using the sources cited for each species.

SWARM / TRANSPORT DATAclick to expand or collapse

Species: e + Air [11], C4F7N [3], C4F7N:Ar [15], C4F7N:CO2 [27], C4F7N:N2 [27], C5F10O [3], C5F10O:Air [24], C5F10O:CO2 [24], CO2 [5], N2 [3]

Updates: 2022-03-22 … 2024-03-26

Downloads: 322 times from 2022-03-22

BOLSIG+ solverclick to expand or collapse

DESCRIPTION: On-line BOLSIG+ solver

HOW TO REFERENCE: G.J.M. Hagelaar and L.C. Pitchford, "Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models", Plasma Sci Sources and Tech 14, 722 (2005)

SWARM / TRANSPORT DATAclick to expand or collapse

Downloads: 51266 times from 2013-09-19